/****************************************************************************** * Spine Runtimes License Agreement * Last updated January 1, 2020. Replaces all prior versions. * * Copyright (c) 2013-2020, Esoteric Software LLC * * Integration of the Spine Runtimes into software or otherwise creating * derivative works of the Spine Runtimes is permitted under the terms and * conditions of Section 2 of the Spine Editor License Agreement: * http://esotericsoftware.com/spine-editor-license * * Otherwise, it is permitted to integrate the Spine Runtimes into software * or otherwise create derivative works of the Spine Runtimes (collectively, * "Products"), provided that each user of the Products must obtain their own * Spine Editor license and redistribution of the Products in any form must * include this license and copyright notice. * * THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, * BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ module spine { /** Stores the current pose for a path constraint. A path constraint adjusts the rotation, translation, and scale of the * constrained bones so they follow a {@link PathAttachment}. * * See [Path constraints](http://esotericsoftware.com/spine-path-constraints) in the Spine User Guide. */ export class PathConstraint implements Updatable { static NONE = -1; static BEFORE = -2; static AFTER = -3; static epsilon = 0.00001; /** The path constraint's setup pose data. */ data: PathConstraintData; /** The bones that will be modified by this path constraint. */ bones: Array; /** The slot whose path attachment will be used to constrained the bones. */ target: Slot; /** The position along the path. */ position = 0; /** The spacing between bones. */ spacing = 0; /** A percentage (0-1) that controls the mix between the constrained and unconstrained rotations. */ rotateMix = 0; /** A percentage (0-1) that controls the mix between the constrained and unconstrained translations. */ translateMix = 0; spaces = new Array(); positions = new Array(); world = new Array(); curves = new Array(); lengths = new Array(); segments = new Array(); active = false; constructor (data: PathConstraintData, skeleton: Skeleton) { if (data == null) throw new Error("data cannot be null."); if (skeleton == null) throw new Error("skeleton cannot be null."); this.data = data; this.bones = new Array(); for (let i = 0, n = data.bones.length; i < n; i++) this.bones.push(skeleton.findBone(data.bones[i].name)); this.target = skeleton.findSlot(data.target.name); this.position = data.position; this.spacing = data.spacing; this.rotateMix = data.rotateMix; this.translateMix = data.translateMix; } isActive () { return this.active; } /** Applies the constraint to the constrained bones. */ apply () { this.update(); } update () { let attachment = this.target.getAttachment(); if (!(attachment instanceof PathAttachment)) return; let rotateMix = this.rotateMix, translateMix = this.translateMix; let translate = translateMix > 0, rotate = rotateMix > 0; if (!translate && !rotate) return; let data = this.data; let percentSpacing = data.spacingMode == SpacingMode.Percent; let rotateMode = data.rotateMode; let tangents = rotateMode == RotateMode.Tangent, scale = rotateMode == RotateMode.ChainScale; let boneCount = this.bones.length, spacesCount = tangents ? boneCount : boneCount + 1; let bones = this.bones; let spaces = Utils.setArraySize(this.spaces, spacesCount), lengths: Array = null; let spacing = this.spacing; if (scale || !percentSpacing) { if (scale) lengths = Utils.setArraySize(this.lengths, boneCount); let lengthSpacing = data.spacingMode == SpacingMode.Length; for (let i = 0, n = spacesCount - 1; i < n;) { let bone = bones[i]; let setupLength = bone.data.length; if (setupLength < PathConstraint.epsilon) { if (scale) lengths[i] = 0; spaces[++i] = 0; } else if (percentSpacing) { if (scale) { let x = setupLength * bone.a, y = setupLength * bone.c; let length = Math.sqrt(x * x + y * y); lengths[i] = length; } spaces[++i] = spacing; } else { let x = setupLength * bone.a, y = setupLength * bone.c; let length = Math.sqrt(x * x + y * y); if (scale) lengths[i] = length; spaces[++i] = (lengthSpacing ? setupLength + spacing : spacing) * length / setupLength; } } } else { for (let i = 1; i < spacesCount; i++) spaces[i] = spacing; } let positions = this.computeWorldPositions(attachment, spacesCount, tangents, data.positionMode == PositionMode.Percent, percentSpacing); let boneX = positions[0], boneY = positions[1], offsetRotation = data.offsetRotation; let tip = false; if (offsetRotation == 0) tip = rotateMode == RotateMode.Chain; else { tip = false; let p = this.target.bone; offsetRotation *= p.a * p.d - p.b * p.c > 0 ? MathUtils.degRad : -MathUtils.degRad; } for (let i = 0, p = 3; i < boneCount; i++, p += 3) { let bone = bones[i]; bone.worldX += (boneX - bone.worldX) * translateMix; bone.worldY += (boneY - bone.worldY) * translateMix; let x = positions[p], y = positions[p + 1], dx = x - boneX, dy = y - boneY; if (scale) { let length = lengths[i]; if (length != 0) { let s = (Math.sqrt(dx * dx + dy * dy) / length - 1) * rotateMix + 1; bone.a *= s; bone.c *= s; } } boneX = x; boneY = y; if (rotate) { let a = bone.a, b = bone.b, c = bone.c, d = bone.d, r = 0, cos = 0, sin = 0; if (tangents) r = positions[p - 1]; else if (spaces[i + 1] == 0) r = positions[p + 2]; else r = Math.atan2(dy, dx); r -= Math.atan2(c, a); if (tip) { cos = Math.cos(r); sin = Math.sin(r); let length = bone.data.length; boneX += (length * (cos * a - sin * c) - dx) * rotateMix; boneY += (length * (sin * a + cos * c) - dy) * rotateMix; } else { r += offsetRotation; } if (r > MathUtils.PI) r -= MathUtils.PI2; else if (r < -MathUtils.PI) // r += MathUtils.PI2; r *= rotateMix; cos = Math.cos(r); sin = Math.sin(r); bone.a = cos * a - sin * c; bone.b = cos * b - sin * d; bone.c = sin * a + cos * c; bone.d = sin * b + cos * d; } bone.appliedValid = false; } } computeWorldPositions (path: PathAttachment, spacesCount: number, tangents: boolean, percentPosition: boolean, percentSpacing: boolean) { let target = this.target; let position = this.position; let spaces = this.spaces, out = Utils.setArraySize(this.positions, spacesCount * 3 + 2), world: Array = null; let closed = path.closed; let verticesLength = path.worldVerticesLength, curveCount = verticesLength / 6, prevCurve = PathConstraint.NONE; if (!path.constantSpeed) { let lengths = path.lengths; curveCount -= closed ? 1 : 2; let pathLength = lengths[curveCount]; if (percentPosition) position *= pathLength; if (percentSpacing) { for (let i = 1; i < spacesCount; i++) spaces[i] *= pathLength; } world = Utils.setArraySize(this.world, 8); for (let i = 0, o = 0, curve = 0; i < spacesCount; i++, o += 3) { let space = spaces[i]; position += space; let p = position; if (closed) { p %= pathLength; if (p < 0) p += pathLength; curve = 0; } else if (p < 0) { if (prevCurve != PathConstraint.BEFORE) { prevCurve = PathConstraint.BEFORE; path.computeWorldVertices(target, 2, 4, world, 0, 2); } this.addBeforePosition(p, world, 0, out, o); continue; } else if (p > pathLength) { if (prevCurve != PathConstraint.AFTER) { prevCurve = PathConstraint.AFTER; path.computeWorldVertices(target, verticesLength - 6, 4, world, 0, 2); } this.addAfterPosition(p - pathLength, world, 0, out, o); continue; } // Determine curve containing position. for (;; curve++) { let length = lengths[curve]; if (p > length) continue; if (curve == 0) p /= length; else { let prev = lengths[curve - 1]; p = (p - prev) / (length - prev); } break; } if (curve != prevCurve) { prevCurve = curve; if (closed && curve == curveCount) { path.computeWorldVertices(target, verticesLength - 4, 4, world, 0, 2); path.computeWorldVertices(target, 0, 4, world, 4, 2); } else path.computeWorldVertices(target, curve * 6 + 2, 8, world, 0, 2); } this.addCurvePosition(p, world[0], world[1], world[2], world[3], world[4], world[5], world[6], world[7], out, o, tangents || (i > 0 && space == 0)); } return out; } // World vertices. if (closed) { verticesLength += 2; world = Utils.setArraySize(this.world, verticesLength); path.computeWorldVertices(target, 2, verticesLength - 4, world, 0, 2); path.computeWorldVertices(target, 0, 2, world, verticesLength - 4, 2); world[verticesLength - 2] = world[0]; world[verticesLength - 1] = world[1]; } else { curveCount--; verticesLength -= 4; world = Utils.setArraySize(this.world, verticesLength); path.computeWorldVertices(target, 2, verticesLength, world, 0, 2); } // Curve lengths. let curves = Utils.setArraySize(this.curves, curveCount); let pathLength = 0; let x1 = world[0], y1 = world[1], cx1 = 0, cy1 = 0, cx2 = 0, cy2 = 0, x2 = 0, y2 = 0; let tmpx = 0, tmpy = 0, dddfx = 0, dddfy = 0, ddfx = 0, ddfy = 0, dfx = 0, dfy = 0; for (let i = 0, w = 2; i < curveCount; i++, w += 6) { cx1 = world[w]; cy1 = world[w + 1]; cx2 = world[w + 2]; cy2 = world[w + 3]; x2 = world[w + 4]; y2 = world[w + 5]; tmpx = (x1 - cx1 * 2 + cx2) * 0.1875; tmpy = (y1 - cy1 * 2 + cy2) * 0.1875; dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.09375; dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.09375; ddfx = tmpx * 2 + dddfx; ddfy = tmpy * 2 + dddfy; dfx = (cx1 - x1) * 0.75 + tmpx + dddfx * 0.16666667; dfy = (cy1 - y1) * 0.75 + tmpy + dddfy * 0.16666667; pathLength += Math.sqrt(dfx * dfx + dfy * dfy); dfx += ddfx; dfy += ddfy; ddfx += dddfx; ddfy += dddfy; pathLength += Math.sqrt(dfx * dfx + dfy * dfy); dfx += ddfx; dfy += ddfy; pathLength += Math.sqrt(dfx * dfx + dfy * dfy); dfx += ddfx + dddfx; dfy += ddfy + dddfy; pathLength += Math.sqrt(dfx * dfx + dfy * dfy); curves[i] = pathLength; x1 = x2; y1 = y2; } if (percentPosition) position *= pathLength; else position *= pathLength / path.lengths[curveCount - 1]; if (percentSpacing) { for (let i = 1; i < spacesCount; i++) spaces[i] *= pathLength; } let segments = this.segments; let curveLength = 0; for (let i = 0, o = 0, curve = 0, segment = 0; i < spacesCount; i++, o += 3) { let space = spaces[i]; position += space; let p = position; if (closed) { p %= pathLength; if (p < 0) p += pathLength; curve = 0; } else if (p < 0) { this.addBeforePosition(p, world, 0, out, o); continue; } else if (p > pathLength) { this.addAfterPosition(p - pathLength, world, verticesLength - 4, out, o); continue; } // Determine curve containing position. for (;; curve++) { let length = curves[curve]; if (p > length) continue; if (curve == 0) p /= length; else { let prev = curves[curve - 1]; p = (p - prev) / (length - prev); } break; } // Curve segment lengths. if (curve != prevCurve) { prevCurve = curve; let ii = curve * 6; x1 = world[ii]; y1 = world[ii + 1]; cx1 = world[ii + 2]; cy1 = world[ii + 3]; cx2 = world[ii + 4]; cy2 = world[ii + 5]; x2 = world[ii + 6]; y2 = world[ii + 7]; tmpx = (x1 - cx1 * 2 + cx2) * 0.03; tmpy = (y1 - cy1 * 2 + cy2) * 0.03; dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.006; dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.006; ddfx = tmpx * 2 + dddfx; ddfy = tmpy * 2 + dddfy; dfx = (cx1 - x1) * 0.3 + tmpx + dddfx * 0.16666667; dfy = (cy1 - y1) * 0.3 + tmpy + dddfy * 0.16666667; curveLength = Math.sqrt(dfx * dfx + dfy * dfy); segments[0] = curveLength; for (ii = 1; ii < 8; ii++) { dfx += ddfx; dfy += ddfy; ddfx += dddfx; ddfy += dddfy; curveLength += Math.sqrt(dfx * dfx + dfy * dfy); segments[ii] = curveLength; } dfx += ddfx; dfy += ddfy; curveLength += Math.sqrt(dfx * dfx + dfy * dfy); segments[8] = curveLength; dfx += ddfx + dddfx; dfy += ddfy + dddfy; curveLength += Math.sqrt(dfx * dfx + dfy * dfy); segments[9] = curveLength; segment = 0; } // Weight by segment length. p *= curveLength; for (;; segment++) { let length = segments[segment]; if (p > length) continue; if (segment == 0) p /= length; else { let prev = segments[segment - 1]; p = segment + (p - prev) / (length - prev); } break; } this.addCurvePosition(p * 0.1, x1, y1, cx1, cy1, cx2, cy2, x2, y2, out, o, tangents || (i > 0 && space == 0)); } return out; } addBeforePosition (p: number, temp: Array, i: number, out: Array, o: number) { let x1 = temp[i], y1 = temp[i + 1], dx = temp[i + 2] - x1, dy = temp[i + 3] - y1, r = Math.atan2(dy, dx); out[o] = x1 + p * Math.cos(r); out[o + 1] = y1 + p * Math.sin(r); out[o + 2] = r; } addAfterPosition (p: number, temp: Array, i: number, out: Array, o: number) { let x1 = temp[i + 2], y1 = temp[i + 3], dx = x1 - temp[i], dy = y1 - temp[i + 1], r = Math.atan2(dy, dx); out[o] = x1 + p * Math.cos(r); out[o + 1] = y1 + p * Math.sin(r); out[o + 2] = r; } addCurvePosition (p: number, x1: number, y1: number, cx1: number, cy1: number, cx2: number, cy2: number, x2: number, y2: number, out: Array, o: number, tangents: boolean) { if (p == 0 || isNaN(p)) { out[o] = x1; out[o + 1] = y1; out[o + 2] = Math.atan2(cy1 - y1, cx1 - x1); return; } let tt = p * p, ttt = tt * p, u = 1 - p, uu = u * u, uuu = uu * u; let ut = u * p, ut3 = ut * 3, uut3 = u * ut3, utt3 = ut3 * p; let x = x1 * uuu + cx1 * uut3 + cx2 * utt3 + x2 * ttt, y = y1 * uuu + cy1 * uut3 + cy2 * utt3 + y2 * ttt; out[o] = x; out[o + 1] = y; if (tangents) { if (p < 0.001) out[o + 2] = Math.atan2(cy1 - y1, cx1 - x1); else out[o + 2] = Math.atan2(y - (y1 * uu + cy1 * ut * 2 + cy2 * tt), x - (x1 * uu + cx1 * ut * 2 + cx2 * tt)); } } } }