/****************************************************************************** * Spine Runtimes Software License v2.5 * * Copyright (c) 2013-2016, Esoteric Software * All rights reserved. * * You are granted a perpetual, non-exclusive, non-sublicensable, and * non-transferable license to use, install, execute, and perform the Spine * Runtimes software and derivative works solely for personal or internal * use. Without the written permission of Esoteric Software (see Section 2 of * the Spine Software License Agreement), you may not (a) modify, translate, * adapt, or develop new applications using the Spine Runtimes or otherwise * create derivative works or improvements of the Spine Runtimes or (b) remove, * delete, alter, or obscure any trademarks or any copyright, trademark, patent, * or other intellectual property or proprietary rights notices on or in the * Software, including any copy thereof. Redistributions in binary or source * form must include this license and terms. * * THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL ESOTERIC SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS INTERRUPTION, OR LOSS OF * USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ using System; namespace SpineRuntime34 { public class Bone : IUpdatable { static public bool yDown; internal BoneData data; internal Skeleton skeleton; internal Bone parent; internal ExposedList children = new ExposedList(); internal float x, y, rotation, scaleX, scaleY, shearX, shearY; internal float appliedRotation; internal float a, b, worldX; internal float c, d, worldY; internal float worldSignX, worldSignY; internal bool sorted; public BoneData Data { get { return data; } } public Skeleton Skeleton { get { return skeleton; } } public Bone Parent { get { return parent; } } public ExposedList Children { get { return children; } } public float X { get { return x; } set { x = value; } } public float Y { get { return y; } set { y = value; } } public float Rotation { get { return rotation; } set { rotation = value; } } /// The rotation, as calculated by any constraints. public float AppliedRotation { get { return appliedRotation; } set { appliedRotation = value; } } public float ScaleX { get { return scaleX; } set { scaleX = value; } } public float ScaleY { get { return scaleY; } set { scaleY = value; } } public float ShearX { get { return shearX; } set { shearX = value; } } public float ShearY { get { return shearY; } set { shearY = value; } } public float A { get { return a; } } public float B { get { return b; } } public float C { get { return c; } } public float D { get { return d; } } public float WorldX { get { return worldX; } } public float WorldY { get { return worldY; } } public float WorldSignX { get { return worldSignX; } } public float WorldSignY { get { return worldSignY; } } public float WorldRotationX { get { return MathUtils.Atan2(c, a) * MathUtils.radDeg; } } public float WorldRotationY { get { return MathUtils.Atan2(d, b) * MathUtils.radDeg; } } public float WorldScaleX { get { return (float)Math.Sqrt(a * a + c * c) * worldSignX; } } public float WorldScaleY { get { return (float)Math.Sqrt(b * b + d * d) * worldSignY; } } /// May be null. public Bone (BoneData data, Skeleton skeleton, Bone parent) { if (data == null) throw new ArgumentNullException("data", "data cannot be null."); if (skeleton == null) throw new ArgumentNullException("skeleton", "skeleton cannot be null."); this.data = data; this.skeleton = skeleton; this.parent = parent; SetToSetupPose(); } /// Same as . This method exists for Bone to implement . public void Update () { UpdateWorldTransform(x, y, rotation, scaleX, scaleY, shearX, shearY); } /// Computes the world transform using the parent bone and this bone's local transform. public void UpdateWorldTransform () { UpdateWorldTransform(x, y, rotation, scaleX, scaleY, shearX, shearY); } /// Computes the world transform using the parent bone and the specified local transform. public void UpdateWorldTransform (float x, float y, float rotation, float scaleX, float scaleY, float shearX, float shearY) { appliedRotation = rotation; float rotationY = rotation + 90 + shearY; float la = MathUtils.CosDeg(rotation + shearX) * scaleX, lb = MathUtils.CosDeg(rotationY) * scaleY; float lc = MathUtils.SinDeg(rotation + shearX) * scaleX, ld = MathUtils.SinDeg(rotationY) * scaleY; Bone parent = this.parent; if (parent == null) { // Root bone. Skeleton skeleton = this.skeleton; float sx = skeleton.scaleX, sy = skeleton.scaleY; a = la * sx; b = lb * sx; c = lc * sy; d = ld * sy; worldX = x * sx; worldY = y * sy; worldSignX = Math.Sign(scaleX); worldSignY = Math.Sign(scaleY); return; } float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d; worldX = pa * x + pb * y + parent.worldX; worldY = pc * x + pd * y + parent.worldY; worldSignX = parent.worldSignX * Math.Sign(scaleX); worldSignY = parent.worldSignY * Math.Sign(scaleY); if (data.inheritRotation && data.inheritScale) { a = pa * la + pb * lc; b = pa * lb + pb * ld; c = pc * la + pd * lc; d = pc * lb + pd * ld; } else { if (data.inheritRotation) { // No scale inheritance. pa = 1; pb = 0; pc = 0; pd = 1; do { float cos = MathUtils.CosDeg(parent.appliedRotation), sin = MathUtils.SinDeg(parent.appliedRotation); float temp = pa * cos + pb * sin; pb = pb * cos - pa * sin; pa = temp; temp = pc * cos + pd * sin; pd = pd * cos - pc * sin; pc = temp; if (!parent.data.inheritRotation) break; parent = parent.parent; } while (parent != null); a = pa * la + pb * lc; b = pa * lb + pb * ld; c = pc * la + pd * lc; d = pc * lb + pd * ld; } else if (data.inheritScale) { // No rotation inheritance. pa = 1; pb = 0; pc = 0; pd = 1; do { float cos = MathUtils.CosDeg(parent.appliedRotation), sin = MathUtils.SinDeg(parent.appliedRotation); float psx = parent.scaleX, psy = parent.scaleY; float za = cos * psx, zb = sin * psy, zc = sin * psx, zd = cos * psy; float temp = pa * za + pb * zc; pb = pb * zd - pa * zb; pa = temp; temp = pc * za + pd * zc; pd = pd * zd - pc * zb; pc = temp; if (psx >= 0) sin = -sin; temp = pa * cos + pb * sin; pb = pb * cos - pa * sin; pa = temp; temp = pc * cos + pd * sin; pd = pd * cos - pc * sin; pc = temp; if (!parent.data.inheritScale) break; parent = parent.parent; } while (parent != null); a = pa * la + pb * lc; b = pa * lb + pb * ld; c = pc * la + pd * lc; d = pc * lb + pd * ld; } else { a = la; b = lb; c = lc; d = ld; } a *= skeleton.scaleX; b *= skeleton.scaleX; c *= skeleton.scaleY; d *= skeleton.scaleY; } } public void SetToSetupPose () { BoneData data = this.data; x = data.x; y = data.y; rotation = data.rotation; scaleX = data.scaleX; scaleY = data.scaleY; shearX = data.shearX; shearY = data.shearY; } public float WorldToLocalRotationX { get { Bone parent = this.parent; if (parent == null) return rotation; float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d, a = this.a, c = this.c; return MathUtils.Atan2(pa * c - pc * a, pd * a - pb * c) * MathUtils.radDeg; } } public float WorldToLocalRotationY { get { Bone parent = this.parent; if (parent == null) return rotation; float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d, b = this.b, d = this.d; return MathUtils.Atan2(pa * d - pc * b, pd * b - pb * d) * MathUtils.radDeg; } } public void RotateWorld (float degrees) { float a = this.a, b = this.b, c = this.c, d = this.d; float cos = MathUtils.CosDeg(degrees), sin = MathUtils.SinDeg(degrees); this.a = cos * a - sin * c; this.b = cos * b - sin * d; this.c = sin * a + cos * c; this.d = sin * b + cos * d; } /// /// Computes the local transform from the world transform. This can be useful to perform processing on the local transform /// after the world transform has been modified directly (eg, by a constraint). /// /// Some redundant information is lost by the world transform, such as -1,-1 scale versus 180 rotation. The computed local /// transform values may differ from the original values but are functionally the same. /// public void UpdateLocalTransform () { Bone parent = this.parent; if (parent == null) { x = worldX; y = worldY; rotation = MathUtils.Atan2(c, a) * MathUtils.radDeg; scaleX = (float)Math.Sqrt(a * a + c * c); scaleY = (float)Math.Sqrt(b * b + d * d); float det = a * d - b * c; shearX = 0; shearY = MathUtils.Atan2(a * b + c * d, det) * MathUtils.radDeg; return; } float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d; float pid = 1 / (pa * pd - pb * pc); float dx = worldX - parent.worldX, dy = worldY - parent.worldY; x = (dx * pd * pid - dy * pb * pid); y = (dy * pa * pid - dx * pc * pid); float ia = pid * pd; float id = pid * pa; float ib = pid * pb; float ic = pid * pc; float ra = ia * a - ib * c; float rb = ia * b - ib * d; float rc = id * c - ic * a; float rd = id * d - ic * b; shearX = 0; scaleX = (float)Math.Sqrt(ra * ra + rc * rc); if (scaleX > 0.0001f) { float det = ra * rd - rb * rc; scaleY = det / scaleX; shearY = MathUtils.Atan2(ra * rb + rc * rd, det) * MathUtils.radDeg; rotation = MathUtils.Atan2(rc, ra) * MathUtils.radDeg; } else { scaleX = 0; scaleY = (float)Math.Sqrt(rb * rb + rd * rd); shearY = 0; rotation = 90 - MathUtils.Atan2(rd, rb) * MathUtils.radDeg; } appliedRotation = rotation; } public void WorldToLocal (float worldX, float worldY, out float localX, out float localY) { float a = this.a, b = this.b, c = this.c, d = this.d; float invDet = 1 / (a * d - b * c); float x = worldX - this.worldX, y = worldY - this.worldY; localX = (x * d * invDet - y * b * invDet); localY = (y * a * invDet - x * c * invDet); } public void LocalToWorld (float localX, float localY, out float worldX, out float worldY) { worldX = localX * a + localY * b + this.worldX; worldY = localX * c + localY * d + this.worldY; } override public String ToString () { return data.name; } } }