/* Copyright 2019-2021 Katy Coe - http://www.djkaty.com - https://github.com/djkaty All rights reserved. */ using System; using System.Collections.Generic; using System.Collections.Specialized; using System.Linq; namespace Il2CppInspector { internal class Il2CppBinaryX64 : Il2CppBinary { public Il2CppBinaryX64(IFileFormatStream stream, EventHandler statusCallback = null) : base(stream, statusCallback) { } public Il2CppBinaryX64(IFileFormatStream stream, uint codeRegistration, uint metadataRegistration, EventHandler statusCallback = null) : base(stream, codeRegistration, metadataRegistration, statusCallback) { } // Format of 64-bit LEA: // 0x48/0x4C - REX prefix signifying 64-bit mode with 64-bit operand size (REX prefix bits: Volume 2A, page 2-9) (bit 2 is register bit 3) // 8x8D - LEA opcode (8D /r, LEA r64, m) // 0xX5 - bottom 3 bits = 101 to indicate subsequent operand is a 32-bit displacement; middle 3 bits = register number; top 2 bits = 00 // Bytes 03-06 - 32-bit displacement // Register numbers: 00b = RAX, 01b = RCX, 10b = RDX, 11b = RBX // See: https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf // Chapter 2.1, 2.1.3, 2.1.5 table 2-2, page 3-537 // NOTE: There is a chance of false positives because of x86's variable instruction length architecture private (int foundOffset, int reg, uint operand)? findLea(byte[] buff, int offset, int searchDistance) { // Find first LEA but don't search too far (either 0x48 0x8D, or 0x4C 0x8D) int i, index; for (i = offset, index = 0; i < offset + searchDistance && i < buff.Length && index < 2; i++) if (index == 1 && buff[i] != 0x8D) index = 0; else if (index != 0 || buff[i] == 0x48 || buff[i] == 0x4C) { ++index; } if (index < 2) return null; var lea = getLea(buff, (int) i - 2); return (i - 2, lea.Value.reg, lea.Value.operand); } private (int reg, uint operand)? getLea(byte[] buff, int offset) { if ((buff[offset] != 0x48 && buff[offset] != 0x4C) || buff[offset + 1] != 0x8D) return null; // Found LEA RnX, [RIP + disp32] var reg = ((buff[offset + 2] >> 3) & 7) + ((buff[offset] << 1) & 8); var operand = BitConverter.ToUInt32(buff, offset + 3); return (reg, operand); } // REX.W + 0x89 - for a 5-byte mov r/m64,r64 // Volume 2B, page 4-35 private bool isMovRM64R64(byte[] buff, int offset = 0) => buff[offset] == 0x48 && buff[offset + 1] == 0x89; // REX 0x40 to set 64-bit mode with 64-bit register size, register bit 3 in REX bit 0; bottom 3 bits of opcode are register bits 0-2 // or the same thing without REX prefix // Volume 2B, page 4-511 private bool isPushR64(byte[] buff, int offset = 0) => ((buff[offset] == 0x40 || buff[offset] == 0x41) && buff[offset + 1] >= 0x50 && buff[offset + 1] <= 0x57) || (buff[offset] >= 0x50 && buff[offset] <= 0x57); // push rbp is a one-byte instruction encoded as 0x55 // mov rbp, rsp is a 3-byte instruction encoded as 0x48 0x89 0xE5 private bool isPrologue(byte[] buff, int offset = 0) => isPushR64(buff) && buff[offset + 1] == 0x48 && buff[offset + 2] == 0x89 && buff[offset + 3] == 0xE5; // 0b0100_0X0Y to set 64-bit mode, 0x31 or 0x33 for XOR, 0b11_XXX_YYY for register numbers // Volume 2C, page 5-612 private (int reg_op1, int reg_op2)? getXorR64R64(byte[] buff, int offset = 0) { if ((buff[offset] & 0b1111_1010) != 0b_0100_0000 || (buff[offset + 1] != 0x31 && buff[offset + 1] != 0x33) || (buff[offset + 2] & 0b1100_0000) != 0b1100_0000) return null; return (((buff[offset] & 0b0000_0100) << 1) + ((buff[offset + 2] & 0b0011_1000) >> 3), ((buff[offset] & 0b0000_0001) << 3) + (buff[offset + 2] & 0b0000_0111)); } // 0x31 or 0x33 for XOR, 0b11_XXX_YYY for register numbers // Volume 2C, page 5-612 private (int reg_op1, int reg_op2)? getXorR32R32(byte[] buff, int offset = 0) { if ((buff[offset] != 0x31 && buff[offset] != 0x33) || (buff[offset + 1] & 0b1100_0000) != 0b1100_0000) return null; return ((buff[offset + 1] & 0b0011_1000) >> 3, buff[offset + 1] & 0b0000_0111); } protected override (ulong, ulong) ConsiderCode(IFileFormatStream image, uint loc) { // Setup var buffSize = 0x76; // minimum number of bytes to process the longest expected function var leaSize = 7; // the length of an LEA instruction with a 64-bit register operand and a 32-bit memory operand var xor64Size = 3; // the length of a XOR instruction of two 64-bit registers var xor32Size = 2; // the length of a XOR instruction of two 32-bit registers var pushSize = 2; // the length of a PUSH instruction with a 64-bit register var offset = 0; int RAX = 0, RBX = 3, RCX = 1, RDX = 2, RSI = 6, RDI = 7; // R8 = 8 ulong pCgr = 0; // the point to the code registration function image.Position = loc; var buff = image.ReadBytes(buffSize); // We have seen two versions of the initializer: // 1. Regular version // 2. Inlined version with il2cpp::utils::RegisterRuntimeInitializeAndCleanup(CallbackFunction, CallbackFunction, order) // Version 1 passes "this" in rcx and the arguments in rdx (our wanted pointer), r8d (always zero) and r9d (always zero) // or "this" in rdi, and the arguments in rsi (our wanted pointer), edx (always zero) and ecx (always zero) // Version 2 has a standard prologue and loads the wanted pointer into rax or rbp (lea rax/rbp) (int reg, uint operand)? lea; // Check for regular version // Generalize it as follows: // - each instruction must be lea r64, imm32 or xor r32, r32 // - xors must always have the same register for both operands // - lea that can't be mapped into the file is the pointer to 'this', otherwise it's the pointer to the init function // - the last instruction should always be jmp (not currently enforced) // - function length should not be longer than 5 instructions (two leas, two xors and one jmp) offset = 0; for (var instructions = 0; instructions < 4; instructions++) { // All allowed instruction types var xor32 = getXorR32R32(buff, offset); var xor64 = getXorR64R64(buff, offset); lea = getLea(buff, offset); if (xor32 != null && xor32.Value.reg_op1 == xor32.Value.reg_op2) { offset += xor32Size; } else if (xor64 != null && xor64.Value.reg_op1 == xor64.Value.reg_op2) { offset += xor64Size; } else if (lea != null) { offset += leaSize; if (pCgr == 0) { try { // We may have found Il2CppCodegenRegistration(void) pCgr = image.GlobalOffset + loc + (ulong) offset + lea.Value.operand; var newLoc = image.MapVATR(pCgr); } catch (InvalidOperationException) { // this pointer pCgr = 0; } } } else { // not lea or xor pCgr = 0; break; } } // Check for inlined version if (pCgr == 0) { // Check for prologue // - A sequence of 0 or more mov [rsp+argX], rXX followed by 1 or more push rXX offset = 0; while (isMovRM64R64(buff, offset)) offset += 5; if (isPushR64(buff, offset)) { // Linear sweep for LEA var leaInlined = findLea(buff, pushSize, buffSize - pushSize); if (leaInlined != null) pCgr = image.GlobalOffset + loc + (uint) leaInlined.Value.foundOffset + (uint) leaSize + leaInlined.Value.operand; } } // Assume we've found the pointer to Il2CppCodegenRegistration(void) and jump there if (pCgr != 0) { try { Image.Position = Image.MapVATR(pCgr); } // Couldn't map virtual address to data in file, so it's not this function catch (InvalidOperationException) { pCgr = 0; } } // Find the first 2 LEAs which we'll hope contain pointers to CodeRegistration and MetadataRegistration // There are two options here: // 1. il2cpp::vm::MetadataCache::Register is called directly with arguments in rcx, rdx, r8 or rdi, rsi, rdx (lea, lea, lea, jmp) // 2. The two functions being inlined. The arguments are loaded sequentially into rax after the prologue if (pCgr != 0) { var buff2Size = 0x50; var buff2 = image.ReadBytes(buffSize); offset = 0; var leas = new Dictionary<(int index, ulong address), int>(); // Find the first three LEAs in the function while (offset + leaSize < buff2Size && leas.Count < 3) { var nextLea = findLea(buff2, offset, buff2Size - (offset + leaSize)); // Use the original pointer found, not the file location + GlobalOffset because the data may be in a different section if (nextLea != null) leas.Add((leas.Count, pCgr + (uint) nextLea.Value.foundOffset + (uint) leaSize + nextLea.Value.operand), nextLea.Value.reg); offset = nextLea?.foundOffset + leaSize ?? buff2Size; } if ((image.Version < 21 && leas.Count == 2) || (image.Version >= 21 && leas.Count == 3)) { // Register-based argument passing? var leaRSI = leas.FirstOrDefault(l => l.Value == RSI).Key.address; var leaRDI = leas.FirstOrDefault(l => l.Value == RDI).Key.address; if (leaRSI != 0 && leaRDI != 0) return (leaRDI, leaRSI); var leaRCX = leas.FirstOrDefault(l => l.Value == RCX).Key.address; var leaRDX = leas.FirstOrDefault(l => l.Value == RDX).Key.address; if (leaRCX != 0 && leaRDX != 0) return (leaRCX, leaRDX); // RAX sequential loading? If so, take the first two arguments var leasRAX = leas.Where(l => l.Value == RAX).OrderBy(l => l.Key.index).Select(l => l.Key.address).ToArray(); if (leasRAX.Length > 1) return (leasRAX[0], leasRAX[1]); } } // If no initializer is found, we may be looking at a DT_INIT function which calls its own function table manually // In the sample we have seen (PlayStation 4), this function runs through two function tables: // 1. Start address of table loaded into rbx, pointer past end of table in r12 (lea rbx; lea r12) // 2. Pointer to final address of 2nd table loaded into rbx (lea rbx), runs backwards (8 bytes per entry) until finding 0xFFFFFFFF_FFFFFFFF // The strategy: find these LEAs, acquire and merge the two function tables, then call ourselves in a loop to check each function address // Expect function prologue and at least 3 64-bit register pushes (there are probably more) if (!isPrologue(buff) || !isPushR64(buff, 4) || !isPushR64(buff, 6) || !isPushR64(buff, 8)) return (0, 0); // Find the start and end addresses of the first function table var leaOfStart = findLea(buff, 10, buffSize - 10); if (leaOfStart == null || leaOfStart.Value.reg != RBX) // Most be lea rbx return (0, 0); var leaOfEnd = findLea(buff, leaOfStart.Value.foundOffset + leaSize, buffSize - (leaOfStart.Value.foundOffset + leaSize)); if (leaOfEnd == null || leaOfEnd.Value.reg == RBX) // Must be lea with any register besides rbx return (0, 0); var ptrStart1 = leaOfStart.Value.foundOffset + leaSize + leaOfStart.Value.operand; var ptrEnd1 = leaOfEnd .Value.foundOffset + leaSize + leaOfEnd .Value.operand; // Find the address of the last item in the second function table var leaOfLastItem = findLea(buff, leaOfEnd.Value.foundOffset + leaSize, buffSize - (leaOfEnd.Value.foundOffset + leaSize)); if (leaOfLastItem == null || leaOfLastItem.Value.reg != 0b11) // Must be lea rbx return (0, 0); var entrySize = 8; // 64-bit array entries var ptrEnd2 = leaOfLastItem.Value.foundOffset + leaSize + leaOfLastItem.Value.operand + entrySize; // Work backwards to find the address of the first item in the second function table var ptrStart2 = ptrEnd2; while (image.ReadUInt64(image.MapVATR((ulong) ptrStart2)) != 0xFFFF_FFFF_FFFF_FFFF) ptrStart2 -= entrySize; ptrStart2 += entrySize; // Acquire both function tables var funcs1 = image.ReadMappedWordArray((ulong) ptrStart1, (int) (ptrEnd1 - ptrStart1) / entrySize); var funcs2 = image.ReadMappedWordArray((ulong) ptrStart2, (int) (ptrEnd2 - ptrStart2) / entrySize); // Check every function var funcs = funcs1.Concat(funcs2); foreach (var pFunc in funcs) { var result = ConsiderCode(image, image.MapVATR((ulong) pFunc)); if (result != (0, 0)) return result; } return (0, 0); } } }