Endfield??
This commit is contained in:
930
BeyondTools.VFS/Crypto/CSChaCha20.cs
Normal file
930
BeyondTools.VFS/Crypto/CSChaCha20.cs
Normal file
@@ -0,0 +1,930 @@
|
||||
/*
|
||||
* Copyright (c) 2015, 2018 Scott Bennett
|
||||
* (c) 2018-2023 Kaarlo Räihä
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
using System;
|
||||
using System.IO;
|
||||
using System.Threading.Tasks;
|
||||
using System.Runtime.Intrinsics;
|
||||
using System.Runtime.CompilerServices;
|
||||
|
||||
namespace BeyondTools.VFS.Crypto;
|
||||
|
||||
/// <summary>
|
||||
/// Chosen SIMD mode
|
||||
/// </summary>
|
||||
public enum SimdMode
|
||||
{
|
||||
/// <summary>
|
||||
/// Autodetect
|
||||
/// </summary>
|
||||
AutoDetect = 0,
|
||||
|
||||
/// <summary>
|
||||
/// 128 bit SIMD
|
||||
/// </summary>
|
||||
V128,
|
||||
|
||||
/// <summary>
|
||||
/// 256 bit SIMD
|
||||
/// </summary>
|
||||
V256,
|
||||
|
||||
/// <summary>
|
||||
/// 512 bit SIMD
|
||||
/// </summary>
|
||||
V512,
|
||||
|
||||
/// <summary>
|
||||
/// No SIMD
|
||||
/// </summary>
|
||||
None
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Class for ChaCha20 encryption / decryption
|
||||
/// </summary>
|
||||
public sealed class CSChaCha20 : IDisposable
|
||||
{
|
||||
/// <summary>
|
||||
/// Only allowed key lenght in bytes
|
||||
/// </summary>
|
||||
public const int allowedKeyLength = 32;
|
||||
|
||||
/// <summary>
|
||||
/// Only allowed nonce lenght in bytes
|
||||
/// </summary>
|
||||
public const int allowedNonceLength = 12;
|
||||
|
||||
/// <summary>
|
||||
/// How many bytes are processed per loop
|
||||
/// </summary>
|
||||
public const int processBytesAtTime = 64;
|
||||
|
||||
private const int stateLength = 16;
|
||||
|
||||
/// <summary>
|
||||
/// The ChaCha20 state (aka "context")
|
||||
/// </summary>
|
||||
private readonly uint[] state = new uint[stateLength];
|
||||
|
||||
/// <summary>
|
||||
/// Determines if the objects in this class have been disposed of. Set to true by the Dispose() method.
|
||||
/// </summary>
|
||||
private bool isDisposed = false;
|
||||
|
||||
/// <summary>
|
||||
/// Set up a new ChaCha20 state. The lengths of the given parameters are checked before encryption happens.
|
||||
/// </summary>
|
||||
/// <remarks>
|
||||
/// See <a href="https://tools.ietf.org/html/rfc7539#page-10">ChaCha20 Spec Section 2.4</a> for a detailed description of the inputs.
|
||||
/// </remarks>
|
||||
/// <param name="key">
|
||||
/// A 32-byte (256-bit) key, treated as a concatenation of eight 32-bit little-endian integers
|
||||
/// </param>
|
||||
/// <param name="nonce">
|
||||
/// A 12-byte (96-bit) nonce, treated as a concatenation of three 32-bit little-endian integers
|
||||
/// </param>
|
||||
/// <param name="counter">
|
||||
/// A 4-byte (32-bit) block counter, treated as a 32-bit little-endian integer
|
||||
/// </param>
|
||||
public CSChaCha20(byte[] key, byte[] nonce, uint counter)
|
||||
{
|
||||
KeySetup(key);
|
||||
IvSetup(nonce, counter);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Set up a new ChaCha20 state. The lengths of the given parameters are checked before encryption happens.
|
||||
/// </summary>
|
||||
/// <remarks>
|
||||
/// See <a href="https://tools.ietf.org/html/rfc7539#page-10">ChaCha20 Spec Section 2.4</a> for a detailed description of the inputs.
|
||||
/// </remarks>
|
||||
/// <param name="key">A 32-byte (256-bit) key, treated as a concatenation of eight 32-bit little-endian integers</param>
|
||||
/// <param name="nonce">A 12-byte (96-bit) nonce, treated as a concatenation of three 32-bit little-endian integers</param>
|
||||
/// <param name="counter">A 4-byte (32-bit) block counter, treated as a 32-bit little-endian unsigned integer</param>
|
||||
public CSChaCha20(ReadOnlySpan<byte> key, ReadOnlySpan<byte> nonce, uint counter)
|
||||
{
|
||||
KeySetup(key.ToArray());
|
||||
IvSetup(nonce.ToArray(), counter);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// The ChaCha20 state (aka "context"). Read-Only.
|
||||
/// </summary>
|
||||
public uint[] State
|
||||
{
|
||||
get
|
||||
{
|
||||
return state;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// These are the same constants defined in the reference implementation.
|
||||
// http://cr.yp.to/streamciphers/timings/estreambench/submissions/salsa20/chacha8/ref/chacha.c
|
||||
private static readonly byte[] sigma = "expand 32-byte k"u8.ToArray();
|
||||
private static readonly byte[] tau = "expand 16-byte k"u8.ToArray();
|
||||
|
||||
/// <summary>
|
||||
/// Set up the ChaCha state with the given key. A 32-byte key is required and enforced.
|
||||
/// </summary>
|
||||
/// <param name="key">
|
||||
/// A 32-byte (256-bit) key, treated as a concatenation of eight 32-bit little-endian integers
|
||||
/// </param>
|
||||
private void KeySetup(byte[] key)
|
||||
{
|
||||
if (key == null)
|
||||
{
|
||||
throw new ArgumentNullException("Key is null");
|
||||
}
|
||||
|
||||
if (key.Length != allowedKeyLength)
|
||||
{
|
||||
throw new ArgumentException($"Key length must be {allowedKeyLength}. Actual: {key.Length}");
|
||||
}
|
||||
|
||||
state[4] = Util.U8To32Little(key, 0);
|
||||
state[5] = Util.U8To32Little(key, 4);
|
||||
state[6] = Util.U8To32Little(key, 8);
|
||||
state[7] = Util.U8To32Little(key, 12);
|
||||
|
||||
byte[] constants = key.Length == allowedKeyLength ? sigma : tau;
|
||||
int keyIndex = key.Length - 16;
|
||||
|
||||
state[8] = Util.U8To32Little(key, keyIndex + 0);
|
||||
state[9] = Util.U8To32Little(key, keyIndex + 4);
|
||||
state[10] = Util.U8To32Little(key, keyIndex + 8);
|
||||
state[11] = Util.U8To32Little(key, keyIndex + 12);
|
||||
|
||||
state[0] = Util.U8To32Little(constants, 0);
|
||||
state[1] = Util.U8To32Little(constants, 4);
|
||||
state[2] = Util.U8To32Little(constants, 8);
|
||||
state[3] = Util.U8To32Little(constants, 12);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Set up the ChaCha state with the given nonce (aka Initialization Vector or IV) and block counter. A 12-byte nonce and a 4-byte counter are required.
|
||||
/// </summary>
|
||||
/// <param name="nonce">
|
||||
/// A 12-byte (96-bit) nonce, treated as a concatenation of three 32-bit little-endian integers
|
||||
/// </param>
|
||||
/// <param name="counter">
|
||||
/// A 4-byte (32-bit) block counter, treated as a 32-bit little-endian integer
|
||||
/// </param>
|
||||
private void IvSetup(byte[] nonce, uint counter)
|
||||
{
|
||||
if (nonce == null)
|
||||
{
|
||||
// There has already been some state set up. Clear it before exiting.
|
||||
Dispose();
|
||||
throw new ArgumentNullException("Nonce is null");
|
||||
}
|
||||
|
||||
if (nonce.Length != allowedNonceLength)
|
||||
{
|
||||
// There has already been some state set up. Clear it before exiting.
|
||||
Dispose();
|
||||
throw new ArgumentException($"Nonce length must be {allowedNonceLength}. Actual: {nonce.Length}");
|
||||
}
|
||||
|
||||
state[12] = counter;
|
||||
state[13] = Util.U8To32Little(nonce, 0);
|
||||
state[14] = Util.U8To32Little(nonce, 4);
|
||||
state[15] = Util.U8To32Little(nonce, 8);
|
||||
}
|
||||
|
||||
private static SimdMode DetectSimdMode()
|
||||
{
|
||||
if (Vector512.IsHardwareAccelerated)
|
||||
{
|
||||
return SimdMode.V512;
|
||||
}
|
||||
else if (Vector256.IsHardwareAccelerated)
|
||||
{
|
||||
return SimdMode.V256;
|
||||
}
|
||||
else if (Vector128.IsHardwareAccelerated)
|
||||
{
|
||||
return SimdMode.V128;
|
||||
}
|
||||
|
||||
return SimdMode.None;
|
||||
}
|
||||
|
||||
#region Encryption methods
|
||||
|
||||
/// <summary>
|
||||
/// Encrypt arbitrary-length byte array (input), writing the resulting byte array to preallocated output buffer.
|
||||
/// </summary>
|
||||
/// <remarks>Since this is symmetric operation, it doesn't really matter if you use Encrypt or Decrypt method</remarks>
|
||||
/// <param name="output">Output byte array, must have enough bytes</param>
|
||||
/// <param name="input">Input byte array</param>
|
||||
/// <param name="numBytes">Number of bytes to encrypt</param>
|
||||
/// <param name="simdMode">Chosen SIMD mode (default is auto-detect)</param>
|
||||
public void EncryptBytes(byte[] output, byte[] input, int numBytes, SimdMode simdMode = SimdMode.AutoDetect)
|
||||
{
|
||||
if (output == null)
|
||||
{
|
||||
throw new ArgumentNullException("output", "Output cannot be null");
|
||||
}
|
||||
|
||||
if (input == null)
|
||||
{
|
||||
throw new ArgumentNullException("input", "Input cannot be null");
|
||||
}
|
||||
|
||||
if (numBytes < 0 || numBytes > input.Length)
|
||||
{
|
||||
throw new ArgumentOutOfRangeException("numBytes", "The number of bytes to read must be between [0..input.Length]");
|
||||
}
|
||||
|
||||
if (output.Length < numBytes)
|
||||
{
|
||||
throw new ArgumentOutOfRangeException("output", $"Output byte array should be able to take at least {numBytes}");
|
||||
}
|
||||
|
||||
if (simdMode == SimdMode.AutoDetect)
|
||||
{
|
||||
simdMode = DetectSimdMode();
|
||||
}
|
||||
|
||||
WorkBytes(output, input, numBytes, simdMode);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Encrypt arbitrary-length byte stream (input), writing the resulting bytes to another stream (output)
|
||||
/// </summary>
|
||||
/// <param name="output">Output stream</param>
|
||||
/// <param name="input">Input stream</param>
|
||||
/// <param name="howManyBytesToProcessAtTime">How many bytes to read and write at time, default is 1024</param>
|
||||
/// <param name="simdMode">Chosen SIMD mode (default is auto-detect)</param>
|
||||
public void EncryptStream(Stream output, Stream input, int howManyBytesToProcessAtTime = 1024, SimdMode simdMode = SimdMode.AutoDetect)
|
||||
{
|
||||
if (simdMode == SimdMode.AutoDetect)
|
||||
{
|
||||
simdMode = DetectSimdMode();
|
||||
}
|
||||
|
||||
WorkStreams(output, input, simdMode, howManyBytesToProcessAtTime);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Async encrypt arbitrary-length byte stream (input), writing the resulting bytes to another stream (output)
|
||||
/// </summary>
|
||||
/// <param name="output">Output stream</param>
|
||||
/// <param name="input">Input stream</param>
|
||||
/// <param name="howManyBytesToProcessAtTime">How many bytes to read and write at time, default is 1024</param>
|
||||
/// <param name="simdMode">Chosen SIMD mode (default is auto-detect)</param>
|
||||
public async Task EncryptStreamAsync(Stream output, Stream input, int howManyBytesToProcessAtTime = 1024, SimdMode simdMode = SimdMode.AutoDetect)
|
||||
{
|
||||
if (simdMode == SimdMode.AutoDetect)
|
||||
{
|
||||
simdMode = DetectSimdMode();
|
||||
}
|
||||
|
||||
await WorkStreamsAsync(output, input, simdMode, howManyBytesToProcessAtTime);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Encrypt arbitrary-length byte array (input), writing the resulting byte array to preallocated output buffer.
|
||||
/// </summary>
|
||||
/// <remarks>Since this is symmetric operation, it doesn't really matter if you use Encrypt or Decrypt method</remarks>
|
||||
/// <param name="output">Output byte array, must have enough bytes</param>
|
||||
/// <param name="input">Input byte array</param>
|
||||
/// <param name="simdMode">Chosen SIMD mode (default is auto-detect)</param>
|
||||
public void EncryptBytes(byte[] output, byte[] input, SimdMode simdMode = SimdMode.AutoDetect)
|
||||
{
|
||||
if (output == null)
|
||||
{
|
||||
throw new ArgumentNullException("output", "Output cannot be null");
|
||||
}
|
||||
|
||||
if (input == null)
|
||||
{
|
||||
throw new ArgumentNullException("input", "Input cannot be null");
|
||||
}
|
||||
|
||||
if (simdMode == SimdMode.AutoDetect)
|
||||
{
|
||||
simdMode = DetectSimdMode();
|
||||
}
|
||||
|
||||
WorkBytes(output, input, input.Length, simdMode);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Encrypt arbitrary-length byte array (input), writing the resulting byte array that is allocated by method.
|
||||
/// </summary>
|
||||
/// <remarks>Since this is symmetric operation, it doesn't really matter if you use Encrypt or Decrypt method</remarks>
|
||||
/// <param name="input">Input byte array</param>
|
||||
/// <param name="numBytes">Number of bytes to encrypt</param>
|
||||
/// <param name="simdMode">Chosen SIMD mode (default is auto-detect)</param>
|
||||
/// <returns>Byte array that contains encrypted bytes</returns>
|
||||
public byte[] EncryptBytes(byte[] input, int numBytes, SimdMode simdMode = SimdMode.AutoDetect)
|
||||
{
|
||||
if (input == null)
|
||||
{
|
||||
throw new ArgumentNullException("input", "Input cannot be null");
|
||||
}
|
||||
|
||||
if (numBytes < 0 || numBytes > input.Length)
|
||||
{
|
||||
throw new ArgumentOutOfRangeException("numBytes", "The number of bytes to read must be between [0..input.Length]");
|
||||
}
|
||||
|
||||
if (simdMode == SimdMode.AutoDetect)
|
||||
{
|
||||
simdMode = DetectSimdMode();
|
||||
}
|
||||
|
||||
byte[] returnArray = new byte[numBytes];
|
||||
WorkBytes(returnArray, input, numBytes, simdMode);
|
||||
return returnArray;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Encrypt arbitrary-length byte array (input), writing the resulting byte array that is allocated by method.
|
||||
/// </summary>
|
||||
/// <remarks>Since this is symmetric operation, it doesn't really matter if you use Encrypt or Decrypt method</remarks>
|
||||
/// <param name="input">Input byte array</param>
|
||||
/// <param name="simdMode">Chosen SIMD mode (default is auto-detect)</param>
|
||||
/// <returns>Byte array that contains encrypted bytes</returns>
|
||||
public byte[] EncryptBytes(byte[] input, SimdMode simdMode = SimdMode.AutoDetect)
|
||||
{
|
||||
if (input == null)
|
||||
{
|
||||
throw new ArgumentNullException("input", "Input cannot be null");
|
||||
}
|
||||
|
||||
if (simdMode == SimdMode.AutoDetect)
|
||||
{
|
||||
simdMode = DetectSimdMode();
|
||||
}
|
||||
|
||||
byte[] returnArray = new byte[input.Length];
|
||||
WorkBytes(returnArray, input, input.Length, simdMode);
|
||||
return returnArray;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Encrypt string as UTF8 byte array, returns byte array that is allocated by method.
|
||||
/// </summary>
|
||||
/// <remarks>Here you can NOT swap encrypt and decrypt methods, because of bytes-string transform</remarks>
|
||||
/// <param name="input">Input string</param>
|
||||
/// <param name="simdMode">Chosen SIMD mode (default is auto-detect)</param>
|
||||
/// <returns>Byte array that contains encrypted bytes</returns>
|
||||
public byte[] EncryptString(string input, SimdMode simdMode = SimdMode.AutoDetect)
|
||||
{
|
||||
if (input == null)
|
||||
{
|
||||
throw new ArgumentNullException("input", "Input cannot be null");
|
||||
}
|
||||
|
||||
if (simdMode == SimdMode.AutoDetect)
|
||||
{
|
||||
simdMode = DetectSimdMode();
|
||||
}
|
||||
|
||||
byte[] utf8Bytes = System.Text.Encoding.UTF8.GetBytes(input);
|
||||
byte[] returnArray = new byte[utf8Bytes.Length];
|
||||
|
||||
WorkBytes(returnArray, utf8Bytes, utf8Bytes.Length, simdMode);
|
||||
return returnArray;
|
||||
}
|
||||
|
||||
#endregion // Encryption methods
|
||||
|
||||
|
||||
#region // Decryption methods
|
||||
|
||||
/// <summary>
|
||||
/// Decrypt arbitrary-length byte array (input), writing the resulting byte array to the output buffer.
|
||||
/// </summary>
|
||||
/// <remarks>Since this is symmetric operation, it doesn't really matter if you use Encrypt or Decrypt method</remarks>
|
||||
/// <param name="output">Output byte array</param>
|
||||
/// <param name="input">Input byte array</param>
|
||||
/// <param name="numBytes">Number of bytes to decrypt</param>
|
||||
/// <param name="simdMode">Chosen SIMD mode (default is auto-detect)</param>
|
||||
public void DecryptBytes(byte[] output, byte[] input, int numBytes, SimdMode simdMode = SimdMode.AutoDetect)
|
||||
{
|
||||
if (output == null)
|
||||
{
|
||||
throw new ArgumentNullException("output", "Output cannot be null");
|
||||
}
|
||||
|
||||
if (input == null)
|
||||
{
|
||||
throw new ArgumentNullException("input", "Input cannot be null");
|
||||
}
|
||||
|
||||
if (numBytes < 0 || numBytes > input.Length)
|
||||
{
|
||||
throw new ArgumentOutOfRangeException("numBytes", "The number of bytes to read must be between [0..input.Length]");
|
||||
}
|
||||
|
||||
if (output.Length < numBytes)
|
||||
{
|
||||
throw new ArgumentOutOfRangeException("output", $"Output byte array should be able to take at least {numBytes}");
|
||||
}
|
||||
|
||||
if (simdMode == SimdMode.AutoDetect)
|
||||
{
|
||||
simdMode = DetectSimdMode();
|
||||
}
|
||||
|
||||
WorkBytes(output, input, numBytes, simdMode);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Decrypt arbitrary-length byte stream (input), writing the resulting bytes to another stream (output)
|
||||
/// </summary>
|
||||
/// <param name="output">Output stream</param>
|
||||
/// <param name="input">Input stream</param>
|
||||
/// <param name="howManyBytesToProcessAtTime">How many bytes to read and write at time, default is 1024</param>
|
||||
/// <param name="simdMode">Chosen SIMD mode (default is auto-detect)</param>
|
||||
public void DecryptStream(Stream output, Stream input, int howManyBytesToProcessAtTime = 1024, SimdMode simdMode = SimdMode.AutoDetect)
|
||||
{
|
||||
if (simdMode == SimdMode.AutoDetect)
|
||||
{
|
||||
simdMode = DetectSimdMode();
|
||||
}
|
||||
|
||||
WorkStreams(output, input, simdMode, howManyBytesToProcessAtTime);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Async decrypt arbitrary-length byte stream (input), writing the resulting bytes to another stream (output)
|
||||
/// </summary>
|
||||
/// <param name="output">Output stream</param>
|
||||
/// <param name="input">Input stream</param>
|
||||
/// <param name="howManyBytesToProcessAtTime">How many bytes to read and write at time, default is 1024</param>
|
||||
/// <param name="simdMode">Chosen SIMD mode (default is auto-detect)</param>
|
||||
public async Task DecryptStreamAsync(Stream output, Stream input, int howManyBytesToProcessAtTime = 1024, SimdMode simdMode = SimdMode.AutoDetect)
|
||||
{
|
||||
if (simdMode == SimdMode.AutoDetect)
|
||||
{
|
||||
simdMode = DetectSimdMode();
|
||||
}
|
||||
|
||||
await WorkStreamsAsync(output, input, simdMode, howManyBytesToProcessAtTime);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Decrypt arbitrary-length byte array (input), writing the resulting byte array to preallocated output buffer.
|
||||
/// </summary>
|
||||
/// <remarks>Since this is symmetric operation, it doesn't really matter if you use Encrypt or Decrypt method</remarks>
|
||||
/// <param name="output">Output byte array, must have enough bytes</param>
|
||||
/// <param name="input">Input byte array</param>
|
||||
/// <param name="simdMode">Chosen SIMD mode (default is auto-detect)</param>
|
||||
public void DecryptBytes(byte[] output, byte[] input, SimdMode simdMode = SimdMode.AutoDetect)
|
||||
{
|
||||
if (output == null)
|
||||
{
|
||||
throw new ArgumentNullException("output", "Output cannot be null");
|
||||
}
|
||||
|
||||
if (input == null)
|
||||
{
|
||||
throw new ArgumentNullException("input", "Input cannot be null");
|
||||
}
|
||||
|
||||
if (simdMode == SimdMode.AutoDetect)
|
||||
{
|
||||
simdMode = DetectSimdMode();
|
||||
}
|
||||
|
||||
WorkBytes(output, input, input.Length, simdMode);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Decrypt arbitrary-length byte array (input), writing the resulting byte array that is allocated by method.
|
||||
/// </summary>
|
||||
/// <remarks>Since this is symmetric operation, it doesn't really matter if you use Encrypt or Decrypt method</remarks>
|
||||
/// <param name="input">Input byte array</param>
|
||||
/// <param name="numBytes">Number of bytes to encrypt</param>
|
||||
/// <param name="simdMode">Chosen SIMD mode (default is auto-detect)</param>
|
||||
/// <returns>Byte array that contains decrypted bytes</returns>
|
||||
public byte[] DecryptBytes(byte[] input, int numBytes, SimdMode simdMode = SimdMode.AutoDetect)
|
||||
{
|
||||
if (input == null)
|
||||
{
|
||||
throw new ArgumentNullException("input", "Input cannot be null");
|
||||
}
|
||||
|
||||
if (numBytes < 0 || numBytes > input.Length)
|
||||
{
|
||||
throw new ArgumentOutOfRangeException("numBytes", "The number of bytes to read must be between [0..input.Length]");
|
||||
}
|
||||
|
||||
if (simdMode == SimdMode.AutoDetect)
|
||||
{
|
||||
simdMode = DetectSimdMode();
|
||||
}
|
||||
|
||||
byte[] returnArray = new byte[numBytes];
|
||||
WorkBytes(returnArray, input, numBytes, simdMode);
|
||||
return returnArray;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Decrypt arbitrary-length byte array (input), writing the resulting byte array that is allocated by method.
|
||||
/// </summary>
|
||||
/// <remarks>Since this is symmetric operation, it doesn't really matter if you use Encrypt or Decrypt method</remarks>
|
||||
/// <param name="input">Input byte array</param>
|
||||
/// <param name="simdMode">Chosen SIMD mode (default is auto-detect)</param>
|
||||
/// <returns>Byte array that contains decrypted bytes</returns>
|
||||
public byte[] DecryptBytes(byte[] input, SimdMode simdMode = SimdMode.AutoDetect)
|
||||
{
|
||||
if (input == null)
|
||||
{
|
||||
throw new ArgumentNullException("input", "Input cannot be null");
|
||||
}
|
||||
|
||||
if (simdMode == SimdMode.AutoDetect)
|
||||
{
|
||||
simdMode = DetectSimdMode();
|
||||
}
|
||||
|
||||
byte[] returnArray = new byte[input.Length];
|
||||
WorkBytes(returnArray, input, input.Length, simdMode);
|
||||
return returnArray;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Decrypt UTF8 byte array to string.
|
||||
/// </summary>
|
||||
/// <remarks>Here you can NOT swap encrypt and decrypt methods, because of bytes-string transform</remarks>
|
||||
/// <param name="input">Byte array</param>
|
||||
/// <param name="simdMode">Chosen SIMD mode (default is auto-detect)</param>
|
||||
/// <returns>Byte array that contains encrypted bytes</returns>
|
||||
public string DecryptUTF8ByteArray(byte[] input, SimdMode simdMode = SimdMode.AutoDetect)
|
||||
{
|
||||
if (input == null)
|
||||
{
|
||||
throw new ArgumentNullException("input", "Input cannot be null");
|
||||
}
|
||||
|
||||
if (simdMode == SimdMode.AutoDetect)
|
||||
{
|
||||
simdMode = DetectSimdMode();
|
||||
}
|
||||
|
||||
byte[] tempArray = new byte[input.Length];
|
||||
|
||||
WorkBytes(tempArray, input, input.Length, simdMode);
|
||||
return System.Text.Encoding.UTF8.GetString(tempArray);
|
||||
}
|
||||
|
||||
#endregion // Decryption methods
|
||||
|
||||
private void WorkStreams(Stream output, Stream input, SimdMode simdMode, int howManyBytesToProcessAtTime = 1024)
|
||||
{
|
||||
int readBytes;
|
||||
|
||||
byte[] inputBuffer = new byte[howManyBytesToProcessAtTime];
|
||||
byte[] outputBuffer = new byte[howManyBytesToProcessAtTime];
|
||||
|
||||
while ((readBytes = input.Read(inputBuffer, 0, howManyBytesToProcessAtTime)) > 0)
|
||||
{
|
||||
// Encrypt or decrypt
|
||||
WorkBytes(output: outputBuffer, input: inputBuffer, numBytes: readBytes, simdMode);
|
||||
|
||||
// Write buffer
|
||||
output.Write(outputBuffer, 0, readBytes);
|
||||
}
|
||||
}
|
||||
|
||||
private async Task WorkStreamsAsync(Stream output, Stream input, SimdMode simdMode, int howManyBytesToProcessAtTime = 1024)
|
||||
{
|
||||
byte[] readBytesBuffer = new byte[howManyBytesToProcessAtTime];
|
||||
byte[] writeBytesBuffer = new byte[howManyBytesToProcessAtTime];
|
||||
int howManyBytesWereRead = await input.ReadAsync(readBytesBuffer, 0, howManyBytesToProcessAtTime);
|
||||
|
||||
while (howManyBytesWereRead > 0)
|
||||
{
|
||||
// Encrypt or decrypt
|
||||
WorkBytes(output: writeBytesBuffer, input: readBytesBuffer, numBytes: howManyBytesWereRead, simdMode);
|
||||
|
||||
// Write
|
||||
await output.WriteAsync(writeBytesBuffer, 0, howManyBytesWereRead);
|
||||
|
||||
// Read more
|
||||
howManyBytesWereRead = await input.ReadAsync(readBytesBuffer, 0, howManyBytesToProcessAtTime);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Encrypt or decrypt an arbitrary-length byte array (input), writing the resulting byte array to the output buffer. The number of bytes to read from the input buffer is determined by numBytes.
|
||||
/// </summary>
|
||||
/// <param name="output">Output byte array</param>
|
||||
/// <param name="input">Input byte array</param>
|
||||
/// <param name="numBytes">How many bytes to process</param>
|
||||
/// <param name="simdMode">Chosen SIMD mode (default is auto-detect)</param>
|
||||
private void WorkBytes(byte[] output, byte[] input, int numBytes, SimdMode simdMode)
|
||||
{
|
||||
if (isDisposed)
|
||||
{
|
||||
throw new ObjectDisposedException("state", "The ChaCha state has been disposed");
|
||||
}
|
||||
|
||||
uint[] x = new uint[stateLength]; // Working buffer
|
||||
byte[] tmp = new byte[processBytesAtTime]; // Temporary buffer
|
||||
int offset = 0;
|
||||
|
||||
int howManyFullLoops = numBytes / processBytesAtTime;
|
||||
int tailByteCount = numBytes - howManyFullLoops * processBytesAtTime;
|
||||
|
||||
for (int loop = 0; loop < howManyFullLoops; loop++)
|
||||
{
|
||||
UpdateStateAndGenerateTemporaryBuffer(state, x, tmp);
|
||||
|
||||
if (simdMode == SimdMode.V512)
|
||||
{
|
||||
// 1 x 64 bytes
|
||||
Vector512<byte> inputV = Vector512.Create(input, offset);
|
||||
Vector512<byte> tmpV = Vector512.Create(tmp, 0);
|
||||
Vector512<byte> outputV = inputV ^ tmpV;
|
||||
outputV.CopyTo(output, offset);
|
||||
}
|
||||
else if (simdMode == SimdMode.V256)
|
||||
{
|
||||
// 2 x 32 bytes
|
||||
Vector256<byte> inputV = Vector256.Create(input, offset);
|
||||
Vector256<byte> tmpV = Vector256.Create(tmp, 0);
|
||||
Vector256<byte> outputV = inputV ^ tmpV;
|
||||
outputV.CopyTo(output, offset);
|
||||
|
||||
inputV = Vector256.Create(input, offset + 32);
|
||||
tmpV = Vector256.Create(tmp, 32);
|
||||
outputV = inputV ^ tmpV;
|
||||
outputV.CopyTo(output, offset + 32);
|
||||
}
|
||||
else if (simdMode == SimdMode.V128)
|
||||
{
|
||||
// 4 x 16 bytes
|
||||
Vector128<byte> inputV = Vector128.Create(input, offset);
|
||||
Vector128<byte> tmpV = Vector128.Create(tmp, 0);
|
||||
Vector128<byte> outputV = inputV ^ tmpV;
|
||||
outputV.CopyTo(output, offset);
|
||||
|
||||
inputV = Vector128.Create(input, offset + 16);
|
||||
tmpV = Vector128.Create(tmp, 16);
|
||||
outputV = inputV ^ tmpV;
|
||||
outputV.CopyTo(output, offset + 16);
|
||||
|
||||
inputV = Vector128.Create(input, offset + 32);
|
||||
tmpV = Vector128.Create(tmp, 32);
|
||||
outputV = inputV ^ tmpV;
|
||||
outputV.CopyTo(output, offset + 32);
|
||||
|
||||
inputV = Vector128.Create(input, offset + 48);
|
||||
tmpV = Vector128.Create(tmp, 48);
|
||||
outputV = inputV ^ tmpV;
|
||||
outputV.CopyTo(output, offset + 48);
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = 0; i < processBytesAtTime; i += 4)
|
||||
{
|
||||
// Small unroll
|
||||
int start = i + offset;
|
||||
output[start] = (byte)(input[start] ^ tmp[i]);
|
||||
output[start + 1] = (byte)(input[start + 1] ^ tmp[i + 1]);
|
||||
output[start + 2] = (byte)(input[start + 2] ^ tmp[i + 2]);
|
||||
output[start + 3] = (byte)(input[start + 3] ^ tmp[i + 3]);
|
||||
}
|
||||
}
|
||||
|
||||
offset += processBytesAtTime;
|
||||
}
|
||||
|
||||
// In case there are some bytes left
|
||||
if (tailByteCount > 0)
|
||||
{
|
||||
UpdateStateAndGenerateTemporaryBuffer(state, x, tmp);
|
||||
|
||||
for (int i = 0; i < tailByteCount; i++)
|
||||
{
|
||||
output[i + offset] = (byte)(input[i + offset] ^ tmp[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
||||
private static void UpdateStateAndGenerateTemporaryBuffer(uint[] stateToModify, uint[] workingBuffer, byte[] temporaryBuffer)
|
||||
{
|
||||
// Copy state to working buffer
|
||||
Buffer.BlockCopy(stateToModify, 0, workingBuffer, 0, stateLength * sizeof(uint));
|
||||
|
||||
for (int i = 0; i < 10; i++)
|
||||
{
|
||||
QuarterRound(workingBuffer, 0, 4, 8, 12);
|
||||
QuarterRound(workingBuffer, 1, 5, 9, 13);
|
||||
QuarterRound(workingBuffer, 2, 6, 10, 14);
|
||||
QuarterRound(workingBuffer, 3, 7, 11, 15);
|
||||
|
||||
QuarterRound(workingBuffer, 0, 5, 10, 15);
|
||||
QuarterRound(workingBuffer, 1, 6, 11, 12);
|
||||
QuarterRound(workingBuffer, 2, 7, 8, 13);
|
||||
QuarterRound(workingBuffer, 3, 4, 9, 14);
|
||||
}
|
||||
|
||||
for (int i = 0; i < stateLength; i++)
|
||||
{
|
||||
Util.ToBytes(temporaryBuffer, Util.Add(workingBuffer[i], stateToModify[i]), 4 * i);
|
||||
}
|
||||
|
||||
stateToModify[12] = Util.AddOne(stateToModify[12]);
|
||||
if (stateToModify[12] <= 0)
|
||||
{
|
||||
/* Stopping at 2^70 bytes per nonce is the user's responsibility */
|
||||
stateToModify[13] = Util.AddOne(stateToModify[13]);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// The ChaCha Quarter Round operation. It operates on four 32-bit unsigned integers within the given buffer at indices a, b, c, and d.
|
||||
/// </summary>
|
||||
/// <remarks>
|
||||
/// The ChaCha state does not have four integer numbers: it has 16. So the quarter-round operation works on only four of them -- hence the name. Each quarter round operates on four predetermined numbers in the ChaCha state.
|
||||
/// See <a href="https://tools.ietf.org/html/rfc7539#page-4">ChaCha20 Spec Sections 2.1 - 2.2</a>.
|
||||
/// </remarks>
|
||||
/// <param name="x">A ChaCha state (vector). Must contain 16 elements.</param>
|
||||
/// <param name="a">Index of the first number</param>
|
||||
/// <param name="b">Index of the second number</param>
|
||||
/// <param name="c">Index of the third number</param>
|
||||
/// <param name="d">Index of the fourth number</param>
|
||||
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
||||
private static void QuarterRound(uint[] x, uint a, uint b, uint c, uint d)
|
||||
{
|
||||
x[a] = Util.Add(x[a], x[b]);
|
||||
x[d] = Util.Rotate(Util.XOr(x[d], x[a]), 16);
|
||||
|
||||
x[c] = Util.Add(x[c], x[d]);
|
||||
x[b] = Util.Rotate(Util.XOr(x[b], x[c]), 12);
|
||||
|
||||
x[a] = Util.Add(x[a], x[b]);
|
||||
x[d] = Util.Rotate(Util.XOr(x[d], x[a]), 8);
|
||||
|
||||
x[c] = Util.Add(x[c], x[d]);
|
||||
x[b] = Util.Rotate(Util.XOr(x[b], x[c]), 7);
|
||||
}
|
||||
|
||||
#region Destructor and Disposer
|
||||
|
||||
/// <summary>
|
||||
/// Clear and dispose of the internal state. The finalizer is only called if Dispose() was never called on this cipher.
|
||||
/// </summary>
|
||||
~CSChaCha20()
|
||||
{
|
||||
Dispose(false);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Clear and dispose of the internal state. Also request the GC not to call the finalizer, because all cleanup has been taken care of.
|
||||
/// </summary>
|
||||
public void Dispose()
|
||||
{
|
||||
Dispose(true);
|
||||
/*
|
||||
* The Garbage Collector does not need to invoke the finalizer because Dispose(bool) has already done all the cleanup needed.
|
||||
*/
|
||||
GC.SuppressFinalize(this);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// This method should only be invoked from Dispose() or the finalizer. This handles the actual cleanup of the resources.
|
||||
/// </summary>
|
||||
/// <param name="disposing">
|
||||
/// Should be true if called by Dispose(); false if called by the finalizer
|
||||
/// </param>
|
||||
private void Dispose(bool disposing)
|
||||
{
|
||||
if (!isDisposed)
|
||||
{
|
||||
if (disposing)
|
||||
{
|
||||
/* Cleanup managed objects by calling their Dispose() methods */
|
||||
}
|
||||
|
||||
/* Cleanup any unmanaged objects here */
|
||||
Array.Clear(state, 0, stateLength);
|
||||
}
|
||||
|
||||
isDisposed = true;
|
||||
}
|
||||
|
||||
#endregion // Destructor and Disposer
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Utilities that are used during compression
|
||||
/// </summary>
|
||||
public static class Util
|
||||
{
|
||||
/// <summary>
|
||||
/// n-bit left rotation operation (towards the high bits) for 32-bit integers.
|
||||
/// </summary>
|
||||
/// <param name="v"></param>
|
||||
/// <param name="c"></param>
|
||||
/// <returns>The result of (v LEFTSHIFT c)</returns>
|
||||
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
||||
public static uint Rotate(uint v, int c)
|
||||
{
|
||||
unchecked
|
||||
{
|
||||
return v << c | v >> 32 - c;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Unchecked integer exclusive or (XOR) operation.
|
||||
/// </summary>
|
||||
/// <param name="v"></param>
|
||||
/// <param name="w"></param>
|
||||
/// <returns>The result of (v XOR w)</returns>
|
||||
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
||||
public static uint XOr(uint v, uint w)
|
||||
{
|
||||
return unchecked(v ^ w);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Unchecked integer addition. The ChaCha spec defines certain operations to use 32-bit unsigned integer addition modulo 2^32.
|
||||
/// </summary>
|
||||
/// <remarks>
|
||||
/// See <a href="https://tools.ietf.org/html/rfc7539#page-4">ChaCha20 Spec Section 2.1</a>.
|
||||
/// </remarks>
|
||||
/// <param name="v"></param>
|
||||
/// <param name="w"></param>
|
||||
/// <returns>The result of (v + w) modulo 2^32</returns>
|
||||
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
||||
public static uint Add(uint v, uint w)
|
||||
{
|
||||
return unchecked(v + w);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Add 1 to the input parameter using unchecked integer addition. The ChaCha spec defines certain operations to use 32-bit unsigned integer addition modulo 2^32.
|
||||
/// </summary>
|
||||
/// <remarks>
|
||||
/// See <a href="https://tools.ietf.org/html/rfc7539#page-4">ChaCha20 Spec Section 2.1</a>.
|
||||
/// </remarks>
|
||||
/// <param name="v"></param>
|
||||
/// <returns>The result of (v + 1) modulo 2^32</returns>
|
||||
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
||||
public static uint AddOne(uint v)
|
||||
{
|
||||
return unchecked(v + 1);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Convert four bytes of the input buffer into an unsigned 32-bit integer, beginning at the inputOffset.
|
||||
/// </summary>
|
||||
/// <param name="p"></param>
|
||||
/// <param name="inputOffset"></param>
|
||||
/// <returns>An unsigned 32-bit integer</returns>
|
||||
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
||||
public static uint U8To32Little(byte[] p, int inputOffset)
|
||||
{
|
||||
unchecked
|
||||
{
|
||||
return p[inputOffset]
|
||||
| (uint)p[inputOffset + 1] << 8
|
||||
| (uint)p[inputOffset + 2] << 16
|
||||
| (uint)p[inputOffset + 3] << 24;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Serialize the input integer into the output buffer. The input integer will be split into 4 bytes and put into four sequential places in the output buffer, starting at the outputOffset.
|
||||
/// </summary>
|
||||
/// <param name="output"></param>
|
||||
/// <param name="input"></param>
|
||||
/// <param name="outputOffset"></param>
|
||||
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
||||
public static void ToBytes(byte[] output, uint input, int outputOffset)
|
||||
{
|
||||
unchecked
|
||||
{
|
||||
output[outputOffset] = (byte)input;
|
||||
output[outputOffset + 1] = (byte)(input >> 8);
|
||||
output[outputOffset + 2] = (byte)(input >> 16);
|
||||
output[outputOffset + 3] = (byte)(input >> 24);
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user